
OA 3302
Winter 2003

Computer Lab 05: Random Variate Generation
In this lab you will write classes implementing three methods for generating triang(a,b,c) random

variates: Inverse Transform, Composition and Acceptance/Rejection. An instance of one of the classes you
write can be retrieved from the RandomFactory class and used wherever you have used a RandomVari-
ate instance previously (such as your ArrivalProcess or Server classes).

Concepts

• Inverse Transform method
• Composition method
• Acceptance/Rejection method
• Implementing an interface
• Writing an abstract class

Description

This lab consists of the following parts:

1. Write the abstract base class TriangleVariateBase
2. Write the concrete TriangleITVariate subclass
3. Write the TestGenerate class to test TriangleITVariate
4. Modify TestGenerate to create a histogram of generated values
5. Write and test the TriangleCVariate subclass of TriangleVariateBase
6. Write and test the TriangleARVariate subclass of TriangleVariateBase
7. Use the classes in the Multiple Server Queue model from Lab 02.

1. Write TriangleVariateBase Class

Define the TriangleVariateBase class to implement the simkit.random.RandomVariate
interface. It should be declared abstract because not all of the methods will be implemented. Since all three
versions will use a RandomNumber instance for Un(0,1) random variates and will have three parameters,
these will be in the base class. Since each version will implement a different algorithm, the generate()
method will be implemented in the subclasses.

The TriangleVariateBase class has four instance variables that should be define with protected
access: double variables left, right, and center, and randomNumber, an instance of RandomNum-
ber. Write setters and getters for each of these variables.

The constructor should have zero parameters and should set the randomNumber instance variable,
using RandomNumberFactory.getInstance().1

Next, write setParameters(Object[]) and getParameters(). The setParameters()
method should check that the passed-in argument has exactly three elements and that each one is an
instance of Number. Throw an IllegalArgumentException if this is not the case.2 The getParame-
ters() method should simply wrap the three double instance variables in an Object[] and return it.

1. As you did when shuffling the deck of cards earlier in the course.
2. For example, to check for the length of the array:

if (params.length != 3){
throw new IllegalArgumentException(“Need 3 elements: “ + params.length);

}

2

Finally, you will need to write a public clone() method as follows:

public Object clone() {
try {

return super.clone();
} catch (CloneNotSupportedException e) {}
return null;

}

2. Write the TriangleITVariate class

The TriangleITVariate class should extend TriangleVariateBase and should only define three
methods: generate() and toString(). The generate() method should implement the Inverse Trans-
form method and use randomNumber.draw() to get the Un(0,1) variate.

Generate U ~ Un(0,1)

If

return

else

return

The toString() method should return a String like: Triangle (1.0, 3.0, 2.0)
[Inverse Transform]. You can put the first part in TriangleVariateBase and append the last part
in the subclass.

3. Write the TestGenerate Class

Write a pure execution class called TestGenerate that obtains an instance of TriangleITVariate and
generates some values from it. Use parameters (1.0, 2.5, 1.5) and seed CongruentialSeeds.SEED[4].
The String you need to pass to the RandomVariateFactory is the fully qualified name of the desired class.1
The first five generated values with this seed should be:2

Triangle (1.0, 2.5, 1.5) [Inverse Transform]
2.1165808510271344
1.704167240128175
2.3708374474151523
1.739624407394265
1.4006090187354705

4. Modify TestGenerate to Create a Histogram

To see the results of your class visually, use the following code:3

Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();
Rectangle window = new Rectangle(400, 300);
CloseableDataWindow cdw =

new CloseableDataWindow(rv.toString());
cdw.setBounds((screen.width - window.width) / 2, (screen.height - window.height)

/ 2,
window.width, window.height);

GraphStat gs = new GraphStat("Triangle", 0.0);

1. That is, oa3302.TriangleITVariate .
2. The first line is from the toString() of TriangleITVariate .
3. You will have to import java.awt.*; simkit.stat.*; and simkit.util.*; The rv variable is the

RandomVariate to be used.

U c a–() b a–()⁄<

a c a–() b a–() U+

b b c–() b a–() 1 U–()–

3

cdw.add(gs.initHistogram(true, 1.0, 2.5, 100));
cdw.setVisible(true);

In the above code fragment, the first two lines establish the dimensions of the screen and of the
data window. The CloseableDataWindow class is the shell for displaying the histogram and the set-
Bounds() command places the window at the center of the screen. The GraphStat instance produces the
histogram, itself with the initHistogram() method. The two arguments to GraphStat’s constructor
are not used in this lab, but are necessary to instantiate a GraphStat (the String and double can be
arbitrary, in fact).

The arguments to GraphStat’s initHistogram() method are as follows:

• boolean - true if histogram is animated, false if not
• double - lower limit of histogram
• double - upper limit of histogram
• int - number of cells in histogram

Finally, to generate the output, write the following loop:

for (int i = 0; i < numberToGenerate; i++) {
gs.sample(0.0, rv.generate());
cdw.repaint();

}

The sample() method of GraphStat requires a double as its first argument for reasons that do not apply
to today’s lab. The second argument is the new observation; GraphStat will put it in the appropriate bin
and update the count. The repaint() method will redraw the histogram after the new observation.

5. Write the TriangleCVariate class

The TriangleCVariate class extends TriangleVariateBase and uses the composition method to
generate a triang(a, b, c) random variate. Use this algorithm in the generate() method and modify the
toString() to indicate that it is using the Composition method. Modify TestGenerate to generate a histo-
gram for this method.

6. Acceptance/Rejection Method

Now write a class called TriangleARVariate that subclasses TriangleVariateBase as gen-
erates triangle random variates using the Acceptance/Rejection method with a uniform majorizing func-
tion. As before, you will only have to write the generate() and the toString() methods. Add this
method to TestGenerate for a third histogram.

7. Use Triangle Variates in the Queueing Model

Finally use your TriangleCVariate and TriangleARVariate as interarrival times for the
multiple server queue model from Lab 2. The output should look something like this: 1

Multiple Server Queue
Number Servers: 2
Service Time Distribution: Triangle (2.0, 5.2, 3.6) [Acceptance/Rejection]

Arrival Process
 Interarrival Times: Triangle (1.0, 3.0, 2.0) [Composition]

Simulation ended at time 2000.0000
There have been 1006 customers arrive to the system

1. Use CongruentialSeeds.SEED[0] for interarrival times and CongruentialSeeds.SEED[1] for service
times. The stopping time is 2000.0. You should not have to modify or recompile the ArrivalProcess or
Service classes

4

There have been 1004 customers served
Average Number in Queue 0.2067
Average Utilization 0.9039

Output

Histograms that should (hopefully) look roughly like the Triangle pdf. Try different parameters for
your Triangle distribution to see their effect. If you change the left and right bounds, change the lower and
upper limits in the initHistogram() method. For the multiple server queue, output approximately cor-
responding to the above.

Deliverables

Turn in your source code a picture of your histograms, and the output from the multiple server
queue run. To print a picture, select the window with the histogram and press <ALT>-Print Screen. Then
open up Wordpad (or Word, if you must) and paste the picture into the document. Finally, print the docu-
ment.

Frequently Asked Questions

What does it mean to “implement the RandomVariate interface”?

An interface usually has a number of methods that must be defined. For the RandomVariate
interface, these are the six methods listed on page1. Each method must be written in order to fully imple-
ment the RandomVariate interface.

I get the following error:
oa3302/TriangleVariateBase.java [13:1] clone() in java.lang.Object cannot implement
clone() in simkit.random.RandomVariate; attempting to assign weaker access privileges;
was public

You need to add the public clone() method to TriangleVariateBase as follows:

public Object clone() {
try {

return super.clone();
} catch (CloneNotSupportedException e) {}
return null;

}

You do not have to do anything more to the subclasses.

I get the following error:
oa3302.TriangleVariateBase should be declared abstract; it does not define generate()
in oa3302.TriangleVariateBase

Define TriangleVariateBase as abstract (public abstract class TriangleVariate-
Base). It must be declared abstract because the generate() method is only implemented in the sub-
classes.

I get strange errors when I run the histogram part, but the histogram seems to look ok.

If the histogram looks ok, then you can (probably) ignore the errors.

I can’t remember the Composition method to generate a triangle variate.
Generate U, V ~ Un(0, 1)
if (V < (c - a) / (b - a))

5

Return a + (c - a)
else

Return b - (b - c)

I can’t remember the Acceptance/Rejection method for generating a triangle variate.
do {

Generate U, V ~ Un (0,1)
Y = a + (b - a) V

} while ((Y < c && U > (Y - a)/(c - a)) || (Y >= c && U > (b - Y)/(b - c))
return Y;

U

1 U–

